Thermochimica Acra, 12 (1975) 359-366 0 **Elsevier Scientific Publishing Company, Amsterdam - Printed in Belgium**

THE THERMAL PROPERTIES OF INORGANIC COMPOUNDS III. STRONTIUM CHLORIDE 6-HYDRATE

W. W. WENDLANDT

Deparrment of Chemistry, Unirersity of Houston, Houston, Texas **77004 (U.S.A.) (Received 17 April 1975)**

ABSTRACT

The TG, DTG, DTA, DSC, EC and dilatometric curves of SrCi₂ 6H₂O are **presented.** Intermediate hydrates having the composition, SrCl₂.2H₂O and $SrCl₂·H₂O$, were detected while there was evidence for $SrCl₂·0.5H₂O$ in the high **pressure DSC curves. DSC curves for this compound were obtained at pressures from 0.2 to 50 atm.**

INTRODUCTION

The thermal deaquation of strontium chloride 6-hydrate has been the subject of numerous investigations_ In the more recent studies, Borchardt and Daniels' found extra endothermic peaks in the DTA curve which were due to the formation of a saturated solution containing the 2-hydrate, $SrCl₂·2H₂O$, and liquid water. The **Eecessary requirements for the appearance of this liquid phase were: (I) that the hydrate system contains a quadruple point; (2) that this quadruple point occurs at a water vapor pressure which is less than atmospheric pressure; (3) that the rate of dissociation of the hydrate be rapid; and (4) the water vapor pressure which is evolved** must be confined to the immediate vicinity of the sample. For SrCl₂-6H₂O, the quadruple point has been reported² to be 61.6°C and 89.7 mm Hg.

The thermal deaquation reactions of SrCI₂ 6H₂O determined by Borchardt **and DanieIs' and the DTA peak temperatures found were:**

$$
SrCl2·6H2O(s) \xrightarrow{66°C} SrCl2·2H2O(s) + 4H2O(l)
$$
 (1)

$$
4H2O(l) \xrightarrow{122 \cdot c} 4H2O(g)
$$
 (2)

$$
\text{SrCl}_2 \cdot 2\text{H}_2\text{O(s)} \xrightarrow{132 \text{°C}} \text{SrCl}_2 \cdot \text{H}_2\text{O(s)} + \text{H}_2\text{O(g)} \tag{3}
$$

$$
\text{SrCl}_2 \cdot \text{H}_2\text{O(s)} \xrightarrow{183^{\circ}\text{C}} \text{SrCl}_2(s) + \text{H}_2\text{O(g)} \tag{4}
$$

Yamamoto et aL3 found that either three or four peaks were obtained in the DTA curve depending upon the size of sample empIoyed_ For a 25 mg sample, four peaks were observed, while a 0.5 mg sample gave three endothermic peaks. No interpretation was given for the three or four peaks although it was stated that the

differences observed were due to differences in the sample surface areas and the water vapor pressures in the immediate vicinity of the sample.

More recently, Buzagh-Gere et al.⁴ studied the effect of sample holder geometry in the DTA curves of $SrCl_2 \cdot 6H_2O$ and other alkaline earth salt hydrates, using the derivatograph. In a labyrinth type sample holder⁵, five endothermic peaks were observed whiIe **in an open crucible type holder, only three peaks were evident. The** DTA peak temperature for the $6 \rightarrow 2$ hydrate transition was reported to be 60°C. From the DTG curve, $6 \rightarrow 3$, $i \rightarrow 0.5$ and $0.5 \rightarrow 0$ hydrate transitions were also reported_

We wish to report here new data on the thermal deaquation of $SrCl₂·6H₂O$ obtained **by use of the thermal anaIysis techniques of DTA, DSC, TG, DTG, EC,** dilatometry, and low- and high-pressure DSC.

EXPERIMENTAL PART

TG

A DuPont Model 951 thermobalance was employed, using sample sizes of 5-6 mg, heating rates of 5 or 10[°]C min⁻¹, and a dynamic dry N₂ furnace atmosphere.

DSC

The high pressure DSC curves were obtained on a DuPont high pressure DSC cell. Sample sizes ranged in mass from 8-12 mg and they were heated at 10° C min⁻¹. Dry cylinder N₂ was used as the cell pressurization gas.

DTA

A Mettler TA-2000 DTA apparatus was used to record the DTA curves. The sample (2-49 mg) was encapsulated in an Al sample holder containing a pin-hole vent. The heating rate was 10° C min⁻¹.

EC

The EC measurements were obtained on an apparatus that has previously been described⁶. The heating rate was 5°C min⁻¹.

Dilatometry

The dilatometry curves were obtained on an apparatus that has previously been described⁷. The heating rate was 10° C min⁻¹.

RESULTS AND DISCUSSION

TG and DTG

The TG curves obtained under a dynamic dry N, atmosphere, as shown in Fig_ 1, indicate the presence of **intermediate** hydrates containing 2- and l-moles of **water per mole of salt, respectively, and giving anhydrous SrCl, as the final product.**

Fig. 1. TG and DTG curves of SrCl₂ \cdot **6H₂O in N₂. (A) 10 K min⁻¹; (B) 5 K min⁻¹; (C) DTG curve** at 5 K min⁻¹.

The temperature stability ranges of the intermediate hydrates show the usual heating rate dependence as do the T_i , T_f , and reaction interval (T_f-T_i) temperatures⁸. For example, at a heating rate of 5 K min⁻¹, the 2-hydrate is stable over the temperature range from 348-356 K; at 10 K min⁻¹, it is shifted to 361-370 K. At the higher heating rate, decrepitation occurs at 408 K resulting in a non-reproducible curve in this temperature region. This decrepitation does not occur at slower heating rates. It is this region in the dehydration process that causes non-reproducibility in the DSC and DTA curves also. Peak maximum temperatures in the DTG curve, at 5 K min⁻¹, occur at 341, 369, and 410 K, respectively. These values are in goodagree ment with those reported by Buzagh-Gere et al.⁴ for an open crucible type sample holder who reported: 333,368, and 408 K, respectively.

DTA

The DTA curve of $SrCl₂·6H₂O$, as obtained on the Mettler TA-2000 instrument, is shown in Fig. 2.

In agreement with previous studies^{$1,3,4$}, four endothermic peaks were observed in the DTA curve, with $(T_s - T_t)$ peak minima temperatures of 343, 378, 398, and 458 K, respectively. A shoulder peak was also observed in the 398-408 K temperature range, which corresponded to the decrepitation region found in the TG curve. As previously discussed, the curve was not very reproducible in this region.

Fig. 2. DTA curve of $SrCl₂·6H₂O$ in a self-generated atmosphere at 10 K min⁻¹.

Based on the TG curve previously reported **and the** DTA results obtained by others, the interpretation of the curve peaks is the same as reported by Borchardt and Daniels¹. The DTA curve obtained here was obtained under conditions of high sensitivity compared with the latter^{3,4} and indicates, as expected, overlapping curve peaks. For example, the first peak is caused by the liberation of a liquid water phase and the formation of the next lower hydrate, $SrCl₂·2H₂O$. Under the dynamic conditions of temperature increase (10 K min^{-1}), water is evolved before the curve can return to the (T_s-T_t) baseline with maximum vaporization occurring at the curve minimum of 373 K. In a sealed tube DTA system⁹, only the first peak is observed in the DTA curve. The remaining two endothermic peaks are due to the transitions, $2 \rightarrow 1$ hydrate and $1 \rightarrow$ anhydrous. There was no evidence from the curve for the appearance or dissociation of a 0.5 hydrate, $SrCl₂·0.5H₂O$, as previously reported⁴ on the basis of DTG curye data-

High-pressure DSC

Previous studies with high-pressure DTA and DSC^{10-12} have been extremely **useful in the interpretation of the dehydration processes of metal salt hydrate systems.** Indeed, this is the case here but the application of elevated pressures (to 50 atm) to **this system also generates new curve** peaks **which cannot be interpreted with the limited data presently available.**

The DSC curves of SrCl₂ \cdot 6H₂O from 0.2 to 50 atm are shown in Figs. 3 and 4.

At sub-ambient atmospheric pressure, 0.2 atm, only three endothermic curve peaks are observed, which is similar to the curve obtained by Yamamoto et al.³. Apparently, the evolved liquid water vaporizes as soon as it is formed during the $6 \rightarrow 2$ hydrate transition. At 1 atm, the curve is similar to the DTA curve shown in **Fig. 2 except that there is less separation in the first two curve peaks.**

On application of pressure $\text{div } N_2$ to the system, the first endothermic peak, **at a minimum temperature of 338 K, remains invariant of pressure_ Since this peak is** due to the $6 \rightarrow 2$ hydrate transition plus the liberation of liquid water, it is expected that it would be independent of pressure. The second peak (actually a shoulder peak), is due to the liquid \rightarrow gas transition of the evolved water and would be expected to be pressure-dependent¹². As can be seen, the peak minimum temperature does increase

Fig. 3. DSC curves of $SrCl_2·6H_2O$ at indicated pressures. Heating rate of 10 K min⁻¹.

Fig. 4. DSC curves of $SrCl₂·6H₂O$ at indicated pressures. Heating rate of 10 K min⁻¹.

with pressure, having **values of** 373 K (1.7 atm); 388 K (5 atm); 393 K **(6.7** atm); 403 K (13.3 atm); 408 K (33.3 atm); and 433 K (50 atm). At 50 atm, the endothermic **peak for the** $2 \rightarrow 1$ **hydrate transition overlaps with this transition making it difficult** to determine the peak minimum temperature.

Another curve peak that is only slightly dependent on pressure is the $2 \rightarrow I$ hydrate transition, which is observed at temperatures of 413-423 K at pressures of l-7 to 50 atm_ At lower pressures, I.7 to 5 atm, there are also other peaks observed in this temperature region which cannot be interpreted. They **may be due to decre**pitation processes, or to saturated solution-liquid water-gaseous water equilibria.

At pressures of 5 atm and higher, the $I \rightarrow$ anhydrous transition peak is split into a doublet, indicating perhaps the formation of a 0.5 hydrate, $SrCl₂·0.5H₂O$. With increasing pressure, the peak minima shift to higher temperatures, reaching a maximum value of 518 K at 50 atm pressure for the $0.5 \rightarrow$ anhydrous transition.

EC ad *dilatamerry*

EIectricaI conductivity (direct current) and dilatometric data are usefuI for elucidating **the** presence of a liquid phase in a metal salt hydrate system. Wendlandt^{6,13-15} has used EC to detect the presence of quadruple points in various metal **salt hydrate systems and found the technique to be very** useful for this determination.

The EC curve, as shown in Fig. 5, indicates the presence of a conducting phase starting at 323 K. This is, of course, expected because of the evolution of 4 moles of water per mole of metal salt and the formation of a saturated solution containing the **Zhydrate, %-Cl,** - **2Hz0. FIuctuations in the EC curve are probably due to** polarization or electrolytic reactions due to the use of direct current. These changes were not observed using alternating current¹⁶ at 1 kHz frequency. The liquid water phase vaporizes rapidIy in the 405-410 K temperature region forming a non-conducting phase- As seen **in the TG curve in Figure I, decrepitation occurs in this temperature region and this is also the region where non-reproducibility is found** in the DTA and DSC curves.

Fig. 5. EC and dilatometric curves of $SrCl₂-6H₂O$. Heating rate of 5 K min⁻¹ for EC curve and **10 K min- 1 for the diIatometric curve.**

The dilatometric curve, also shown in Fig. 5, indicates a volume decrease during the liquid water evolution. This is due to the push-rod of the dilatometer being immersed into the saturated solution. The curve went off-scale at about 370 K. As seen here, dilatometry can be used to detect the presence of liquid phases also.

ACKNOWLEDGMENTS

The partial financiai support of this work by the Robert A. Welch Foundation of Houston, Texas, is gratefully acknowledged. It is also a pleasure to acknowIedge Dr. H. G. Wiedemann for use of the Mettler DTA instrument.

REFERENCES

- **1 H_ J. Borchardt and F. DanieIs, J.** Am. Chem. Sue., **61 (1957) 917.**
- 2 E. M. Collins and A. W. C. Menzies, *J. Am. Chem. Soc.*, 40 (1936) 379.
- **3 A. Yarnamoto,** *K.* **Yamada, hf. Marura and J. Akiyama, in R. F. Schwenker and P_ D_ Gam (Eds.),** *Thcmtat Atttysis, Vol. I,* **Academic Press. New York. 1969. p_ 105.**
- **4 E. Buzagh-Gere, S_ Gal and J. Simon. Hung. Sci. fnsrrum., 25 (1973) 25.**
- **5 F. Paulik and J. Paulik,** *Thenttochim_ Acta. 4 (I972) 189.*
- *6 W. W. Wendlandt, Thermochim. Acta, 1 (1970) 11.*
- **7 W. W_ WendIandt, Anal.** *Ckim. Acfc. 33 (1965) 9%*
- *S W. W.* **Wendlandt,** *TkrnttaI Methods of Analysis,* **2nd Ed.. Wiley-interscicnce, Sew** York, 1974. **Ch. 2.**
- **9 W_ W_ WendIandt. unpublished resuIts_**
- **10 C_ E.** *Lock=* **and R_ L_ Stone. in R. F. Schwenker and P. D. Gam (Eds.),** *Thermal Analysis. Vol. 2,* **Academic Press, New York, 1969. p_ 963.**
- **I1 J_ R. WiUiams and W.** *W.* **\Vendlandt,** *Thermochirtt. Acra. 7 (1973) 275.*
- 12 J. R. Williams and W. W. Wendlandt, *Thermochim. Acta*, 7 (1973) 269.
- *13 W.* **W_ Wendlandr,** *Thermochim_ Acra, 1* **(1970) 419.**
- 14 Z. Halmos, L. W. Collins and W. W. Wendlandt, *Thermochim. Acta*, 8 (1974) 381.
- 15 E. L. Simmons and W. W. Wendlandt, *Thermochim. Acta*, 3 (1971) 25.
- *16 W. W.* **Wendlandt, unpublished results_**